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Abstract
In this study, we propose a multimodal model for predicting the
end-of-utterance probability in spoken dialogue systems, high-
lighting the unique role of visual cues in addition to acous-
tic and linguistic information. Although the effectiveness of
visual cues, such as gaze, mouth, and head movements, has
been suggested, few studies have fully incorporated them into
turn-taking models, and the relative importance of these visual
cues has also been underresearched. To address these issues,
we first conducted an ablation study on visual features, show-
ing the larger contribution of eye movements than mouth and
head movements. Additionally, an end-to-end visual feature ex-
traction model utilizing 3D-CNN is employed to comprehen-
sively capture these visual cues. By combining visual features
with acoustic and verbal information, AUC score for end-of-
utterance prediction improved from 0.896 to 0.920, demonstrat-
ing the effectiveness of incorporating these visual cues in turn-
taking models.
Index Terms: spoken dialog systems, turn-taking, multimodal
machine learning

1. Introduction
This study proposes a turn-taking model incorporating visual,
acoustic, and linguistic features. Traditionally, turn-taking re-
search in spoken dialogue systems has extensively relied on
linguistic and acoustic information as turn-taking cues, such
as syntactic completion, semantics, intonation, speaking speed,
and other voice characteristics [1]. However, visual cues, such
as eye gaze, mouth movements, nodding, and gestures, have
also been found to be effective turn-taking cues in conversation
analysis studies. For instance, Kendon [2] found that in face-to-
face conversations, speakers often look away at the beginning of
their speech and look back at the end. Vincent et al. [3] demon-
strated a strong correlation between mouth-opening movements
and speech production, while Maynard [4] showed that in con-
versations in Japanese, speakers use vertical head movements
to indicate the end of a clause or turn. Furthermore, Duncan [5]
found that the end of the turn can be indicated by completing a
hand gesture. These previous studies suggest that by incorpo-
rating these visual cues, turn-taking models have the potential to
improve accuracy. This study aims to investigate two research
questions.

1. How effective are visual cues, such as gaze, mouth, and head
movements, as turn-taking cues?

2. To what extent can turn-taking model performance be im-
proved by incorporating visual information in addition to au-
dio and verbal cues?

To answer these questions, we build an end-of-utterance pre-

diction model using facial feature points that incorporate mo-
tion features of the eyes, mouth, and head. We then conduct an
ablation study to examine the effectiveness of these motion fea-
tures. We also extract visual features using 3D-CNN and fuse
them with acoustic and language features to build a multimodal
model for predicting end-of-utterance. This study focuses on
online interview dialogues, and gestures are not included dur-
ing validation as they are often not captured in this setting. The
results of this study have the potential to improve turn-taking
model accuracy by demonstrating the effectiveness of visual
cues and the importance of incorporating comprehensive visual
information in turn-taking models.

2. Related work
2.1. Classification of turn-taking models

Skantze categorized turn-taking models in spoken dialogue sys-
tems into three groups [1]. The first category is represented by
the Silence-based model, which utilizes the speaker’s silence
longer than a certain threshold to indicate the end of utterances.
However, it is not realistic to suppress interruptions while min-
imizing response delay [6]. The second category is the IPU-
based model, where IPUs (inter-pausal units) are speech seg-
ments without silence for a specific duration (e.g., 200 ms). The
end of the IPUs are detected using VAD or ASR, at which point
TRPs (transition-relevant places) are predicted from the turn-
taking cues from the speaker. TRPs are defined as the point
where a turn change can occur. Accurate prediction of TRPs
allows the system to take turns with minimal gaps and avoid in-
terrupting the user at non-TRP points. The third category is the
Continuous model, which continuously processes user speech
without relying on VAD or ASR. This model offers the ben-
efit of predicting not just TRPs, but also BRPs (backchannel-
relevant places) and intentional system interruptions during user
speech. This paper adopts the IPU-based turn-taking model,
which separates the optimization problem of turn-taking timing
from the problem of TRP prediction. By focusing on the prob-
lem to just TRP prediction, we assess the effectiveness of visual
cues in turn-taking by comparing TRP prediction performance
with and without visual information.

2.2. Multimodal turn-taking model using visual cues

The literature on turn-taking models for spoken dialogue sys-
tems is vast, with many studies focusing on linguistic or acous-
tic cues or both [7, 8, 9, 10, 11, 12, 13]. Meanwhile, some
studies have also incorporated visual cues. De Kok et al. [14]
used a sequential probabilistic model that incorporated the head
gestures of the participants to predict the end of a speaker’s turn
in a multi-person conversation. Roddy et al. [15] proposed a
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turn-taking model that incorporates different timescale modali-
ties and demonstrated the inclusion of gaze features along with
language and acoustic features. These studies, however, did not
fully utilize eye, mouth, and head movements, which have been
established as valid visual turn-taking cues in previous research.
In contrast, Ishii et al. [16] utilized comprehensive visual cues
by extracting high-level representations of visual information as
turn-taking cues from images of speakers using Resnet. How-
ever, they extracted visual information end-to-end, making it
unclear which specific visual features were effective. To the
best of our knowledge, this study is the first to investigate in
detail the effectiveness of visual cues in a turn-taking model.
Accordingly, we conduct an ablation study to identify practical
visual features for turn-taking cues.

3. Dataset

To create a dataset of turn-taking samples, we adopted online
interviews that were originally designed to assess an English
speaking ability [17]. The data comprises 210 dialogues of a
10-minute online interview conversation between a Japanese
learner of English and an English teacher. Figure 1 illustrates
the process of creating video clips. The audio and video of both
the interviewer and interviewee were segmented into IPUs, and
a 5-second video clip was created by cutting from the end of
each IPU. In this study, each video was segmented by a silence
longer than 300ms. Each video clip included a 0.3-second silent
interval after the end of the IPU. A total of 21,728 video clips
were created and the samples were divided into training, valida-
tion, and evaluation sets: the dataset contained 18,910 training
samples, 1,911 validation samples, and 1,046 evaluation sam-
ples.

Fig. 1. Dataset creation process: Clip out the last 5 seconds
of IPUs to create video clips for the dataset. Each video clip
contains a 0.3-second silence interval after the IPU.

To systematically generate training data, we used multi-
ple rules to automatically label the training and validation data.
During the interview, the speaker either continues speaking af-
ter IPU or gives the turn to the interlocutor. We assigned the
label of ”continue utterance” in the former case and that of
”end utterance” in the latter case. Multiple conditions were set
using voice activity detection (VAD) and transcription of dia-
logue sentences to execute this process. The training data con-
sisted of 8,109 ”continue utterance” samples and 10,801 ”end
utterance” samples. To accurately measure the model perfor-
mance, the test data were labeled by three annotators. In cases
where a judgment cannot be made, the label ”unknown” was as-
signed, and the ground truth was determined based on the ma-
jority vote. Nineteen samples without a majority were excluded
from the evaluation data. The inter-rater agreement was 0.767
using Krippendorf’s alpha. The test data consisted of 530 ”con-
tinue utterance” samples and 497 ”end utterance” samples.

4. Ablation study on visual cues
The literature of conversation analysis suggests that gaze [2],
mouth [3], and head movements [4] are useful cues for turn-
taking. However, no study has investigated the effectiveness
of individual cues in the turn-taking model. We conducted an
ablation study on visual cues to evaluate their effectiveness.

4.1. Design of visual features

We used the speaker’s face landmark coordinates to extract vi-
sual features of gaze, mouth, and head movements. To obtain
the coordinates, we used MediaPipe’s FaceMesh1 and collected
478 landmark points from the speaker’s face. We calculated
three types of feature, as shown in Table 1, using the coordi-
nates of the eyes, mouth, and facial contours. The first feature
is the pupil position, which captures the relative position of the
pupil concerning the eye size in the x and y-axis directions. The
second feature is the mouth opening, which indicates the extent
of mouth opening relative to the face size in both x and y direc-
tions. The third feature is the head direction, which indicates the
inclination of the speaker’s head in roll, pitch, and yaw direc-
tions relative to the camera’s front direction. Figure 2 shows the
appearance of these features. We standardized these 7 features
to have a mean of 0 and a variance of 1.

Fig. 2. Visual feature extraction: The feature points used for
extracting pupil positions, mouth opening, and head direction
features, along with the line segments connecting each of them.

4.2. Visual feature extraction model

We used a 5-layer unidirectional LSTM as a feature extraction
model to capture the temporal changes in gaze, mouth, and head
using the aforementioned features. The number of intermediate
dimensions of LSTM was set to 15, and 3 fully connected lay-
ers were added on the top of the intermediate layer at the final
timestep to obtain an output dimensionality of 2. The final out-
put value was passed through the softmax function to generate
the probabilities of ”end utterance” and ”continue utterance”.
For the model input, we utilized the final 2-second visual fea-
tures from the end of the 5-second video clip. We used the
dataset described in Section 3 and cross-entropy loss as the ob-
jective function, with a learning rate of 5× 10−3.

4.3. Result of ablation study

This section explores how effective eye gaze and mouth and
head movements are as visual cues for turn-taking. We per-
formed an ablation study on the aforementioned model to eval-
uate the effectiveness of these features. The experiment set out
to examine the effects of removing the pupil position, mouth
opening, and head direction features from the input of LSTM
end-of-utterance prediction model on its performance.

1https://google.github.io/mediapipe/solutions/face mesh.html
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Table 1. Extraction method for each visual feature

Features Extraction method
X-axis - pupil position (x-axis distance between the center of the pupil and left edge of eye)/(x-axis distance between the right and left edge of eye)
Y-axis - pupil position (y-axis distance between the center of the pupil and the upper edge of the eye)/(y-axis distance between the top and bottom of the eye)

X-axis - mouth opening (x-axis distance between the right and left edges of the mouth)/(x-axis distance of the left and right reference feature points of the face)
Y-axis - mouth opening (y-axis distance between top and bottom of the mouth)/(y-axis distance of the upper and lower reference feature points of the face)

Roll-head direction (x-axis coordinates of feature points in the upper part of the face)-(x-axis coordinates of feature points in the lower part of the face)
Pitch - head direction (z-axis coordinates of feature points in the upper part of the face)-(z-axis coordinates of feature points in the lower part of the face)
Yaw - head direction (z-axis coordinates of feature points in the left part of the face)-(z-axis coordinates of feature points on the right part of the face)

Table 2. Ablation study on visual features

AUC Accuracy Precision Recall F1
All features 0.801 0.797 0.739 0.899 0.811

w/o eye feature 0.684 0.678 0.619 0.870 0.723
w/o mouth feature 0.739 0.733 0.660 0.924 0.770

w/o head pose feature 0.758 0.759 0.700 0.875 0.778

Table 2 shows that the model with all features provides the
best performance for end-of-utterance prediction, indicating the
essential role of pupil position, mouth opening, and head di-
rection features in accurate turn-taking. Furthermore, the worst
performance was observed when the pupil positional features
were removed, indicating that gaze movement is the most cru-
cial signal for turn-taking among the three movements of gaze,
mouth, and head. Additionally, the performance was compa-
rable when removing the mouth opening and head direction
features, with a slightly lower performance when excluding the
mouth opening feature. This suggests that mouth movement is a
relatively more critical cue for turn-taking than head movement.

To further explore the effectiveness of the visual feature ex-
traction model, we qualitatively observed misclassified samples
in predicting the end-of-utterance with all visual features. Sev-
eral samples were found to have incorrect predictions due to
the failure to capture movements. Due to the limited number
of dimensions in the visual features, the visual cues extraction
capability may be inadequate. To enhance the performance of
the visual feature extraction model, we explored an end-to-end
approach that utilizes higher-dimensional visual features in the
second experiment.

5. End-to-End visual feature extraction
5.1. End-to-End model using 3D-CNN

Ishii et al. [16] combined ResNet and GRU for visual feature
extraction. ResNet extracted spatial image features while GRU
captured their temporal changes. For our visual feature extrac-
tion model, we used X3d [18], a 3D-CNN that can extract both
spatial and temporal features. X3d is expected to capture visual
turn-taking cues more accurately than a 2D-CNN-LSTM model
given its superior performance in video object recognition tasks
[18, 19]. We selected X3d-S as our model size for this study.

Before being inputted into the X3d model, the image se-
quence of the video clips underwent the following preprocess-
ing steps: (1) extracting the video frame by frame and retaining
the last 2 seconds, (2) extracting the facial region based on the
facial landmark coordinates using FaceMesh of MediaPipe, (3)
resizing the image and adjusting the length of the long side to
the specified length for X3d-S, (4) making the image square by
zero-padding the shorter sides, (5) down-sampling the number
of frames in the time direction to match the specified length of
X3d-S, and (6) normalizing the image colors for image recog-
nition preprocessing. The resulting preprocessed image tensors

were then used as input for X3d-S.

Fig. 3. Image before processing Fig. 4. Image post
processing

The model was trained using the same process as in Section
4.2. A learning rate of 10−4 was used during training.

5.2. Evaluation of End-to-End model

To evaluate the end-to-end model using X3d, we compared it to
the non-end-to-end model based on Facemesh and LSTM pre-
viously described in Section 4.2. The results are presented in
Table 3.

Table 3. Evaluation of E2E model

approach AUC Accuracy Precision Recall F1
Non-E2E(LSTM) 0.801 0.797 0.738 0.899 0.811

E2E(X3d) 0.830 0.831 0.805 0.857 0.830

The end-to-end model using X3d-S demonstrated higher
AUC, accuracy, and F1 metrics in comparison to the non-end-
to-end model using LSTM, indicating a more accurate predic-
tion of the end-of-utterance using the former approach. This is
possibly due to the precise capture of gaze information through
the utilization of higher-dimensional visual features. Nonethe-
less, the end of a speaker’s utterance depends not only on visual
cues but also on prosody and the content of the utterance [1].
The next section examines to what extent incorporating acous-
tic and linguistic information alongside visual information can
enhance predictive performance.

6. Multimodal end-of-utterance prediction
6.1. Overview

Our proposed multimodal end-of-utterance prediction model
extracts acoustic, linguistic, and a comprehensive set of visual
features from the speaker’s face, which are then fused for pre-
diction. Figure 5 shows a whole architecture of the proposed
model. The proposed model comprises three submodules that
extract acoustic, linguistic, and visual features, fused using five
fully connected layers. The model outputs the probability of
”end utterance” and ”continue utterance” by passing through
the softmax function. This model can work with a single or
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a combination of submodules as it is fused by simple concate-
nation. The following sections will explain the details of each
submodule.

Fig. 5. The proposed multimodal model architecture: The num-
bers in parentheses in the figure indicate the dimensionality of
the tensor output from each layer. B size represents the batch
size.

6.2. Feature extraction modules

We utilized Wav2vec 2.0 [20] to extract acoustic turn-taking
cues from the speaker’s voice. This pre-trained self-supervised
learning framework uses a large amount of speech data as a fea-
ture extractor to learn these cues. We finetuned the ”wav2vec2-
base” pre-trained model with the dataset described in Section 3,
which was augmented with noise. Visual cues from the speaker
were extracted using the method described in Section 5.1, and
language features were extracted using Bert [21]. Bert used the
transcribed utterances of the interviewer and interviewee as dia-
logue history, with up to 512 tokens before the end of the video
clip. We used the ”bert-base-uncased” learned model for Bert.

6.3. Model Training

The proposed multimodal end-of-utterance prediction model
was trained in two steps. In step 1, we trained the unimodal
end-of-utterance predictors for the acoustic feature extraction
model, visual feature extraction model, and language feature
extraction model. The problem setup, dataset, and loss function
are identical to the model in the ablation study section 4.2. Dur-
ing training, we set the learning rate to 2×10−5 for the acoustic
feature extraction model, 10−4 for the visual feature extraction
model, and 5×10−6 for the language feature extraction model.
In step 2, we trained the fully connected layer of the multimodal
end-of-utterance prediction model while keeping the parame-
ters of each submodule fixed. Only the fully connected layer
was trained with a learning rate of 10−4.

6.4. Model evaluation

In the experiment, we compared the performance or end-of-
utterance prediction for all combinations of acoustic, linguis-
tic, and visual features. The results are presented in Table 4.
Among the unimodal models, the model that utilized acoustic
information achieved the highest AUC score of 0.887, followed
by the model that incorporated visual information with an AUC
score of 0.830, and the model that relied solely on linguistic

Table 4. Evaluation of proposed multimodal model

Input Feature AUC Accuracy Precision Recall F1
Audio 0.887 0.885 0.833 0.953 0.889
Vision 0.830 0.831 0.805 0.857 0.830

Language 0.827 0.826 0.794 0.863 0.827
Audio+Vision 0.917 0.918 0.896 0.940 0.917

Audio+Language 0.896 0.896 0.874 0.918 0.895
Vision+Language 0.836 0.835 0.827 0.852 0.833

Audio+Vision+Language 0.920 0.919 0.891 0.950 0.919

information with a slightly lower AUC score of 0.827. Fur-
thermore, the performance of the multimodal model improved
significantly, from an AUC score of 0.896 to 0.920, by combin-
ing visual information with acoustic and linguistic information,
indicating the usefulness of visual cues in turn-taking. Con-
versely, the addition of linguistic information to acoustic and
visual information only resulted in a marginal improvement in
the AUC score, from 0.917 to 0.920. Future research should ex-
plore methods for aligning linguistic information with acoustic
and visual information in an organic manner.

7. Conclusion
This study confirms the effectiveness of visual information as
turn-taking cues and proposes a multimodal end-of-utterance
prediction model using comprehensive visual cues. We devel-
oped a model that extracts motion features of the eye, mouth,
and head based on facial landmark coordinates and predicts the
end of utterance. Our ablation study showed that these three
motion features contributed to the performance of predicting the
end-of-utterance, with eye movements being the most signifi-
cant factor. We then employed 3D-CNN to extract comprehen-
sive visual features end-to-end, resulting in better performance
compared to the non-end-to-end model. Finally, by integrating
these visual features with acoustic and linguistic features, we
demonstrated that incorporating visual cues improved the end-
of-utterance prediction performance, showing the effectiveness
of using visual cues in turn-taking models.
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